Blog
Układ otwarty
Arkadiusz Jadczyk
Arkadiusz Jadczyk fizyk teoretyk
151 obserwujących 1203 notki 2851196 odsłon
Arkadiusz Jadczyk, 27 lipca 2017 r.

W niecierpliwym oczekiwaniu na Poissona

653 30 1 A A A
Kolejka do Poissona
Kolejka do Poissona
Znowu po ostatniej notce zawisłem. Wszystko z powodu elementarnych problemów. Kiedyś, gdy byłem na studiach doktoranckich, trwały wtedy trzy lata, z możliwością przedłużenia na czwarty, sam wybierałem sobie dział fizyki czy matematyki, który chciałem opanować. Mógł to być jakiś wykład, mogły to być studia własne z książek. Z tym, że musiałem u kogoś z tego zdać egzamin. Choć byłem na studiach fizyki teoretycznej, wybierałem z reguły matematykę. Powód był prosty: matematykę byłem w stanie zrozumieć. Fizyki nigdy nie udało mi się zrozumieć. Podręczniki i profesorowie, bez różnicy, zawsze się nad czymś prześlizgiwali. Zawsze były pytania które mi nie dawały spać, ale ani podręcznik ani wykładowca nie byli w stanie udzielić na moje pytania nie wymijającej odpowiedzi. Więc jako jeden z tematów wybrałem rachunek prawdopodobieństwa. Chodziłem więc na wykłady profesora Urbanika do matematyków. Nie było to prsote, musiałem się wiele douczać z książek. Z Halmosa, z Loeva. Na końcu zdałem egzamin, rachunek prawdopodobieństwa zaliczyłem. Bodaj nawet na piątkę. Dziś jednak, gdy czas do tego wrócić, widzę, że mało z tego zapamiętałem. Gdy się jakiegoś narzędzia na co dzień nie używa – wychodzi się z wprawy. U mnie jest to szczególnie łatwe, bo z ogromną łatwością, wręcz chorobliwą, zapominam. Uczyłem się kiedyś grać na fortepianie. Nawet na jakieś „popisy” chodziłem. Dziś nic z mojej umiejętności czytania nut nie zostało. Gdy próbuję od początku, przychodzi mi to z ogromnym trudem, wręcz z bólem.


Ale nie o tym ta notka. Ta notka to przecież ma być o procesie Poissona. Poisson to, wiadomo, ryba. Ryby bywają śliskie. No i proces Poissona tez jest śliski. Zacząłem o nim pisać, zaciąłem się. Wyślizguje mi się z rąk. Nie dam się jednak. Uczę się od początku.


W poprzedniej notce, Kolejka do Poissona, zacząłem opisywać proces Poissona aksjomatycznie, biorąc za podstawę wykład Prof. D. Joyce'a, Department of Mathematics and Computer Science, Clark University, p.t. „The Poisson process Math 217 Probability and Statistics”. Poprzednia notka kończyła się tak:


Są trzy aksjomaty


Aksjomat 1) Ilości zdarzeń zachodzących w dwóch rozłącznych przedziałach czasowych są niezależne.


Aksjomat 2) Prawdopodobieństwo zajścia zdarzenia w przedziale czasowym [a,a+h] o małej długości h jest w przybliżeniu proporcjonalne do h, ze współczynnikiem proporcjonalności λ . Dokładniej:


lim h→ 0 P(zdarzenia w [a,a+h])/h = λ


Aksjomat 3) Prawdopodobieństwo tego, że w małym przedziale czasu [t,t+h] zajdą dwa zdarzenia jest znacznie mniejsze od prawdopodobienśtwa, że zajdzie tam jedno zdarzenie. Dokładniej:


lim h→ 0 P(dwa lub więcej zdarzeń w [a,a+h])/P(jedno zdarzenie w [a,a+h]) = 0


W następnej notce pójdziemy śladami Poissona (prof. Joyce'a) wyciągając wnioski z powyższych aksjomatów. Tym samym stanie się jaśniejszy ich sens.


No i już tu się zaciąłem. Jakoś było to dla mnie za mało ścisłe. W końcu mówimy o matematyce, zatem możemy rozmawiać w sposób ścisły, nieprawdaż? A tu tymczasem rozmawia się o jakichś „zdarzeniach”. A co to takiego to „zdarzenie”? Gdzie mieszka? Co je? Wykład tego nie wyjaśnia. Sprawdzam więc jaki podręcznik zaleca prof. Joyce do swego wykładu? W podręczniku zapewne będzie zrobione może mniej „opisowo”, ale za to bardziej ściśle.


Prof. Joyce poleca podręcznik „A First Course in Probability” Sheldona M. Rossa. Podręcznik wyczaiłem w internecie, zaglądam, i w samej rzeczy jest lepiej. Ross zaczyna od tego, że mamy proces losowy N(t) – to liczba zdarzeń zachodzących w przedziale N(t). Proces Poissona to jest „kolekcja zmiennych losowych” N(t), dla t>=0. To już jest lepiej. Zaczynam sobie powoli coś przypominać. Nie jestem pewien czy dobrze. Zapewne to N(t) okaże się procesem Poissona …. A co to jet N(t)? To rodzina zmiennych losowych. Dla każdego nieujemnego t mamy zmienną losową N(t). Czemu nieujemnego? A nie mogłoby być po prostu: dla każdego? Tego nie wiem. Przypuśćmy. Kiedyś tam zaczynamy naszą obserwację. Chwilę początkową umawiamy się oznaczać przez t=0. Czyli, że musiał być początek? Ciekawe, ciekawe …. No więc N(10) to zmienna losowa. Co to znaczy? Przypominam sobie z teorii prawdopodobieństwa Żeby móc mówić o zmiennych losowych musi być jakaś „przestrzeń zdarzeń elementarnych” Ω. Same „zdarzenia elementarne” oznaczane są zwykle małymi ω. Na tym Ω mamy „prawdopodobieńswtwo” P. Podzbiory A zbioru Ω nazywamy „zdarzeniami”. P(A) to „prawdopodobieństwo zajścia zdarzenia A”. Jednak w definicji procesu Poissona, gdy mówimy, że N(t) to ilość zdarzeń, które zaszły w czasie od 0 do t, to mówimy o jakiś innych „zdarzeniach”. Dobrze jest mieć na uwadze jakiś przykład. Znajduję, że przykładem procesu Poissona są gole strzelone w czasie meczu piłki nożnej: Soccer: is scoring goals a predictable Poissonian process? Ale nie. Jednak nie jest to taki jednoznaczne. Są komplikacje z niezależnością. Więc może lepiej inny przykład dawany często w literaturze: N(t) to ilość błędów w pakietach przesyłanych w danej sieci komputerowej. Zamiast więc mówić, że N(t) to ilość „zdarzeń”, może lepiej mówić o liczbie „sygnałów”?. Też niedobrze. Ważne jest to, że N(t) może przyjmować jedynie wartości całkowite 0,1,2,...


Na przykład N(10) jest nieokreślone. Mówimy, że to zmienna losowa. Gdy zaczynamy liczyć w poniedziałek rano, to o godzinie 10-tej będzie 70 błędów, ale gdy zaczniemy liczyć w środę rano, o godzinie 10-tej będzie 30 błędów. Średnio wypada, powiedzmy 5 błędów na godzinę. To jedno jest pewne.


Matematycznie: Tak naprawdę mamy funkcję N(t, ω). Przy ustalonym t jest to funkcja od ω. Przy ustalonym ω jest to funkcja od t. Mówimy, że jest to jedna z możliwych trajektorii (historii) procesu losowego. Gdy robię symulację komputerową, produkuję właśnie taką jedną trajektorię. Mam przy tym nadzieję, że jest to trajektoria „typowa”. Choć co to znaczy „typowa”, w ścisłym tego sensie słowa, matematycznie - tego nie wiem, choć bardzo chciałbym wiedzieć.


No i znów nie posunąłem się do przodu. Zaczynasz się Czytelniku niecierpliwić? W następnej notce …. Jak przyjdzie kolej ...


Skomentuj Obserwuj notkę Napisz notkę Zgłoś nadużycie
NEWSY - TOP 5

O mnie

Naukowiec, zainteresowany obrzeżami nauki.

Katalog SEO Katalog StronRanking i toplista blogуw i stron

Najlepsze Blogi Katalog blogów. Najlepsze blogi. world map hits counter
map counter

Życie jest religią.
Nasze życiowe doświadczenia odzwierciedlają nasze oddziaływania z Bogiem.
Ludzie śpiący są ludźmi małej wiary gdy idzie o ich oddziaływania ze wszystkim co stworzone.
Niektórzy ludzie sądzą, że świat istnieje dla nich, po to, by go pokonać, zignorować lub zgasić.
Dla tych ludzi świat zgaśnie.
Staną się dokładnie tym co dali życiu.
Staną się jedynie snem w "przeszłości".
Ci co baczą uważnie na obiektywną rzeczywistość wokół siebie, staną się rzeczywistością "Przyszłości"



Lista wszystkich wpisów

 

Ostatnie notki

Obserwowane blogi

Najpopularniejsze notki

Ostatnie komentarze

  • Ósemki http://arkadiusz-jadczyk.eu/images/osemka.jpg To obraz końca wektora (1,0,0) -...
  • @AE911truth.org "A jaką metodą znalazł się w na dole, czy od razu przeniósł się do pokoju...
  • "Ciekawe czego nauczył się z tej przygody kot ;)" Obawiam się, że wyciągnie logiczny...

Tematy w dziale Technologie