Układ otwarty
Ucz się tak, jakbyś miał żyć wiecznie, żyj tak jakbyś miał umrzeć jutro" Życie jest religią.
183 obserwujących
1380 notek
3328k odsłon
986 odsłon

A lata lecą - według szczególnej teorii względności

Wykop Skomentuj78

Wystąpią w tej notce Bob i Alicja? Kto to tacy? Przytoczę najpierw opis z Wikipedii:

Alicja i Bob – aliasy dla archetypów w takich dziedzinach jak kryptologia i fizyka. Nazwy te są używane dla wygody, gdyż wyjaśnienia typu „Osoba A chce wysłać wiadomość do osoby B” mogą być zbyt trudne do śledzenia w złożonych systemach zawierających wiele poziomów.

W naszym przypadku będą Bob i Alicja, będzie fizyka. Kryptologii nie będzie, chyba, że ktoś zechce się dopatrywać zaszyfrowanego podtekstu w niniejszej notce. Zapewniam jednak, ze takiego nie ma. Dziś o 17-tej odbywa się telekonferencja  na temat „Nature of time – online seminar” organizowana przez  Jarka Dudę z UJ. Dzisiejszy wykład ma Richard Gill, temat seminarium:  "Some thoughts on Bell’s theorem and on Bell denialism"

Pojawia się tam m.in. takie zdanie: „Locality = Alice’s outcomes don’t depend on Bob’s settings and  vice-versa”. Tak trafili do mojej notki Bob  i Alicja. Dotychczas zazwyczaj podróżowali osobno, jak tu:

image

Jednak los dał im teraz inne zadanie. Zainteresowało ich przyśpieszenie, krzywizna i grawitacja, jak tu


Narzeczonego zaś dodałem z własnej inicjatywy, żeby nie było iż Bob i Alicja podczas 40 lat wspólnej podróży na statku kosmicznym robią cokolwiek innego poza niestrudzonymi badaniami głębokiego kosmosu,  i dyskutowaniem rodzącej się właśnie technologii podróży w czasie.

A teraz do rzeczy. Temat do dzisiejszej notki zapożyczyłem z monografii W. D. Curtis, F.R. Miller, „Differential Manifolds and Theoretical Physics”, ostatnio próbowała ją studiować kotka Pikabu.

image


Jest tam postawiony, w podrozdziale „Accelerated Motion – A Space Odyssey”, str. 229-232, problem, który dziś przedstawię, bowiem pasuje idealnie jako przerywnik w mojej aktualnej serii notek. W książce problem jest postawiony i rozwiązany. A ja to teraz zreferuję w mojej własnej wersji.

Historia zaś przedstawia się tak: Bob i Alicja ruszają w kosmos by wspólnie badać niezbadane głębie. W oryginale brzmi to tak: „A rocket leaves the earth on a mission to explore deep space”. To „Deep space" pzwoliłem sobie przetłumaczyć jako „niezbadane głębie”. A statek wysposażyłem w załogę: to Bob i Alicja. Statek kosmiczny porusza się ruchem jednostajnie przyśpieszonym tak, że pojawia się tam sztuczna grawitacja wywołana stałym przyśpieszeniem równym ziemskiemu:

a = g = 9.8 m/s2.

Przez 10 lat rakieta przyśpiesza oddalajac się od Ziemi, stale w tę samą stronę. Następnie wlącza się hamowanie. Z tym samym co do wartości przyśpieszeniem. Na statku zatem góra zamienia się miejscami z dołem. Po kolejnych 10 latach statek zwalnia do prędkości zero, na chwilę się zatrzymuje, a następnie wraca na Ziemię tą samą metodą: 10 lat przyśpieszanie, 10 lat hamowanie. Te „lata” to lata własne. O tyle lat Bob i Alicja wracają na Ziemię starsi. Tyle lat wspólnie na statku spędzili, tyle lat poświęcili na badania i na dyskusje.

Pytanie jest takie: Alicja pozostawiła na Ziemi narzeczonego. W jakim będzie on wieku gdy Alicja wróci z wyprawy na Ziemię?

Kto słyszła już o „paradoksie bliźniąt” domyśla się zapewne, że narzeczony stanie się od Alicji znacznie starszy (nawet jeśli przedtem był młodszy). Ale O ILE STARSZY?

Miast wysyłać rakiety i ludzi, miast badać doświadczalnie, możemy całą rzecz zasymulować, możemy odpowiedź znaleźć przy pomocy matematyki. Co niniejszym zrobimy.  

Ruch jednostajnie przyśpieszony, ten o jaki tu konkretnie chodzi, opisałem formułami w notce o paradoksie Bella „Szczególna teoria względności z rosnącym przyśpieszeniem”, a także w notkach wczesniejszych.  Zakładając (w naszym przypadku w przybliżeniu można takie założenie przyjąć), że  z Ziemią można związać układ inercjalny, ruch jednostajnie przyśpieszony naszego statku kosmicznego opisywany jest równaniami

X0 = cT = (1/a) sinh(aτ)  
X1 = (1/a)  cosh(aτ) – (1/a)

W formule na X1 odjąłem 1/a tak by dla τ=0 nasz statek znajdował się w początku układu współrzędnych.

Parametr τ to „czas własny”, u nas mierzony w metrach. By dopasować dane z zadania do naszych równań musimy zamienić lata na metry używając do tego celu wartości prędkości światła:

c = 3 x 10 8 m/s

Rok to 31536000 sekund. 10 lat to 315360000 sekund, a to jest

315360000 s x 3x10 8 m/s = 9.46 x 10 16 m.

Przyśpieszenie ziemskie wynoszące g= 9.8 m/s2 musimy wyrazić w odrotnościach metra dzieląc przez c2. Otrzymamy

a=1.09 x 10-16 m-1

Stąd  aτ = 1.09 x 10-16 m-1 x 9.46 x 10 16 m = 10.3

Teraz

(1/a) sinh (10.3) = 14866/ 1.09 10-16 = 1.36x1020 m

Co jest równe 14 376 lat. Całą podróż składa się z czterech odcinków tej samej długości, zatem wiek narzeczonego po powrocie statku będzie powiększony o

Delta N = 4 x 14376 = 57504 lat.

Będzie to zatem już pan poważny,  w starszym wieku i z dużym doświadczeniem. Ksiązka zaokrągla inaczej i podaje wiek nieco leciwszy, mianowicie 57,600 lat. Ta drobna różnica tylko 96 lat nie powinna jednak dla Alicji mieć większego znaczenia. Jest wszak wiosna


Wykop Skomentuj78
Ciekawi nas Twoje zdanie! Napisz notkę Zgłoś nadużycie

Więcej na ten temat

Salon24 news

Co o tym sądzisz?

Inne tematy w dziale Technologie