Przełomowy eksperyment w fizyce kwantowej. Może zapoczątkować rewolucję

Eksperyment z mionami. fot. Fermilab
Eksperyment z mionami. fot. Fermilab
Badaczom w USA udało się odkryć, że cząstki elementarne zwane mionami łamią prawa fizyki. Część naukowców sugeruje, że za zachowanie mionów może odpowiadać ta sama siła, która kieruje czarną materią.

Może to oznaczać, że mionami kieruje jakaś nieznana ludzkości siła, a przy obecnym stanie wiedzy naukowcy nie są w stanie wytłumaczyć pewnych zjawisk.

Co to są miony?

Pierwsze wyniki prowadzonego od lat eksperymentu Muon g-2 w Fermi National Accelerator Laboratory Departamentu Energii USA pokazują, że cząstki elementarne zwane mionami zachowują się w sposób, który nie został przewidziany przez obecną teorię, Model Standardowy – informuje strona internetowa Fermilab.

Zespół ponad 200 naukowców z 35 instytucji w siedmiu krajach zakończył właśnie analizę ruchu ponad 8 miliardów mionów krążących z prędkością bliską prędkości światła w Fermi National Accelerator Laboratory (Fermilab) - na razie tylko dla pierwszego roku eksperymentu (2018 r.). Potwierdziła się rozbieżność, która zastanawia naukowców od dziesięcioleci.

Miony są nietrwałymi cząstkami elementarnymi o masie około 200 razy większej niż "spokrewniony” z nim elektron (który także jest leptonem). Miony powstają naturalnie w ziemskiej atmosferze pod wpływem promieniowania kosmicznego - właśnie dzięki temu odkrył je w roku 1937 Carl David Anderson. Duże ilości tych cząstek można wytwarzać dzięki akceleratorom.

Miony mają swoje ładunki elektryczne, więc reagują na pole magnetyczne. Częstotliwość, z jaką mion obraca się pod wpływem pola magnetycznego, jest określona przez jego interakcje z innymi cząstkami i siłami, reprezentowanymi przez liczbę zwaną współczynnikiem g. Współczynnik g mionu ma wartość 2. Dlatego właśnie eksperyment nazwano Muon g-2.

Dzięki Modelowi Standardowemu fizycy mogą bardzo dokładnie przewidzieć, ile powinna wynosić ta liczba. Powinno to być 2,00233183620, a wartość poprawki momentu magnetycznego to 0,00116591810. Jednak uśrednione wartości, jakie uzyskano podczas najnowszych eksperymentów w Fermilab to 2,00233184122 oraz 0,00116592061. Prawdopodobieństwo, że uzyskane wyniki są fałszywe wynosi 1:40 000. Obecnie prowadzone są analizy danych z dwóch kolejnych sezonów (lata 2019–2020). Jednocześnie trwa czwarty sezon, a piąty jest planowany. Połączenie danych ze wszystkich wspomnianych sezonów pozwoli na określenie współczynnika g z jeszcze większą precyzją.

Już wcześniej - w roku 2006 w Brookhaven National Laboratory w Nowym Jorku - naukowcy natrafili na rozbieżności z Modelem Standardowym, ale nowe dowody, zebrane podczas znacznie dokładniejszych pomiarów, zwiększają prawdopodobieństwo, że chodzi o rzeczywistą sprzeczność.

Dlaczego miony są takie ważne?

Zdaniem fizyków anomalię mogą powodować zjawiska mechaniki kwantowej – tak zwane cząstki wirtualne. To pary składające się z cząstki i jej antycząstki, które powstają w wyniku fluktuacji kwantowych, by niemal natychmiast zniknąć. Mimo ekstremalnie krótkiego czasu trwania mogą wpływać na zachowanie prawdziwych cząstek, takich jak miony. Pary te mogą tworzyć cząstki dowolnego typu – na przykład elektron – pozyton czy proton – antyproton, ale wśród nich są zapewne również takie, których nauka jeszcze nie zna. Tymczasem modele stosowane do przewidywania współczynnika g mionu uwzględniają tylko efekty oczekiwane od znanych cząstek wirtualnych.

- To, co mierzymy, odzwierciedla wszystkie interakcje, z jakimi mion miał do czynienia. Jednak gdy teoretycy przeprowadzają swoje obliczenia, biorąc pod uwagę wszystkie znane siły i cząstki Modelu Standardowego, okazuje się, że wynik ich obliczeń jest różny od wyniku naszego eksperymentu. To mocna wskazówka, że na mion działa coś, czego nie przewiduje Model - mówi Renee Fatemi, fizyk z University of Kentucky, która odpowiada za symulacje w eksperymencie Muon g-2.

- Dzisiaj jest niezwykły dzień, długo oczekiwany nie tylko przez nas, ale i przez całą międzynarodową społeczność fizyków - powiedział Graziano Venanzoni, współrzecznik eksperymentu Muon g-2 i fizyk z włoskiego Narodowego Instytutu Fizyki Jądrowej. - Duże uznanie dla naszych młodych naukowców, którzy swoim talentem, pomysłami i entuzjazmem pozwolili nam osiągnąć ten niesamowity wynik”.

- Praca nad tym jest fantastycznie interesująca - mówi David Kawall, profesor na wydziale fizyki UMass. - Wszystko ma znaczenie. Każdy najmniejszy szczegół ma znaczenie, a wszystkie przyszłe teorie fizyki będą musiały być zgodne z tym wynikiem.

- Ustalenie subtelnego zachowania mionów jest niezwykłym osiągnięciem, które wytyczy kierunki poszukiwań poza Modelem Standardowym na wiele lat - powiedział zastępca dyrektora ds. Badań Fermilab Joe Lykken. - To ekscytujący czas dla badań nad fizyką cząstek elementarnych. Fermilab jest liderem.

Niedawno podczas eksperymentu prowadzonego w Wielkim Zderzaczu Hadronów w CERN fizycy zaobserwowali inną osobliwość związaną z rozpadem mionów. Możliwe, że zjawiska te mają ze sobą coś wspólnego. - Do tej pory przeanalizowaliśmy mniej niż 6 proc. danych, które ostatecznie zgromadzi eksperyment. Chociaż te pierwsze wyniki mówią nam, że istnieje intrygująca różnica w stosunku do Modelu Standardowego, w ciągu następnych kilku lat dowiemy się znacznie więcej - mówi naukowiec Fermilab, Chris Polly.

KJ

Lubię to! Skomentuj28 Napisz notkę Zgłoś nadużycie

Więcej na ten temat

Komentarze

Inne tematy w dziale Technologie