Pirogronian Pirogronian
584
BLOG

Elektryczne Słońce - cz. 3

Pirogronian Pirogronian Nauka Obserwuj temat Obserwuj notkę 1

P { margin-bottom: 0.21cm; }A:link { }

Rys. 1. Energia, pole elektryczne oraz gęstość ładunku jako funkcja odległości od powierzchni Słońca.

P { margin-bottom: 0.21cm; }A:link { }

Fluktuacje "wiatru" słonecznego

Interesujące jest, że te trzy wykresy zaprezentowane powyżej są identyczne jak wykres energii, pola E i gęstości ładunku w tranzystorze złączowym. Oczywiście w ciele stałym zachodzą inne procesy na innym poziomie energetycznym (pasmo walencyjne i przewodzące) w stałym krysztale. W plazmie słonecznej nie ma stałych centrów atomowych, wiec istnieje tylko jedno pasmo energetyczne. W tranzystorze, amplituda prądu kolektora (analogia do unoszenia jonów dodatnich wiatru słonecznego w prawo) jest w prosty sposób kontrolowana przez zmianę różnicy woltaży bazy i emitera. Czy taki sam mechanizm (fluktuacje woltażu pomiędzy Słońcem - anodą a granulami fotosfery) steruje zachowaniem Słońca? Gdy woltaż Słońca się obniża, np na skutek nadmiernego wypromieniowywania jonów dodatnich, zwiększy się woltaż pomiędzy a i b na diagramie energii, co zmniejszy intensywność wiatru słonecznego (zarówno dośrodkowo poruszających się elektronów, jak i odśrodkowych jonów dodatnich) na zasadzie ujemnego sprzężenia zwrotnego. W maju 1999 wiatr słoneczny zupełnie ustał na około dwa dni. Istnieją również okresowe zaburzenia. Mechanizm tranzystora, opisany powyżej, może być jak najbardziej zdolny do powodowania tych zjawisk. Model fuzji zupełnie nie radzi sobie z tym zagadnieniem, podczas gdy tranzystorowe "odcięcie" jest bardzo dobrze znanym w elektronice zjawiskiem, używanym w każdym urządzeniu cyfrowym.

Stany charakterystyczne plazmy

Na podstronie tej witryny, poświęconej elektrycznej plazmie, omówiono trzy charakterystyczne statyczne stany, na jakich plazma może operować. Tu jest nieco bardziej akuratny opis - potrzebujemy go do dokładnego opisania rzeczy obserwowanych na powierzchni Słońca. Statyczna wolto-amperowa charakterystyka typowego laboratoryjnego wyładowania plazmowego ma kształt przedstawiony poniżej.

P { margin-bottom: 0.21cm; }A:link { }

Rys. 2. Woltowo-aperowy wykres wyładowania plazmy. Wyróżniono stan ciemnego prądu, żarzenia oraz łuku.

P { margin-bottom: 0.21cm; }A:link { }

Wykres ten jest rejestrowany zwykle w plazmie laboratoryjnej zamkniętej w kolumnie - cylindrycznej szklanej tubie z anodą na jednym końcu i katodą na drugim. Te dwie końcówki są podłączone do zewnętrznego obwodu elektrycznego, przez który można z zewnątrz kontrolować prądem. W takim eksperymencie, plazma ma przestrzeń o stałym przekroju od początku do końca tuby. Na osi pionowej wykresu znajduje się napięcie rozciągające się pomiędzy anodą a katodą, przez całą plazmę, jako funkcja prądu płynącego przez plazmę. Oś pozioma określa całkowity prąd (A). Może być to przemianowane na gęstość prądu w punkcie. Gęstość prądu mówi, jak wiele amperów na metr kwadratowy przepływa przez przekrój tuby. Jeśli pozioma oś pokazuje gęstość prądu przez plazmę, oś pionowa będzie opisywać pole elektryczne (V/m) w punkcie. W cylindrycznej tubie przekrój jest na całej długości jednakowy, więc gęstość prądu w każdy odcinku jest proporcjonalna do całkowitego prądu płynącego przez plazmę.

Gdy rozważamy Słońce, mamy do czynienia ze sferyczną geometrią. Przekrój staje się sferą. Załóżmy stały całkowity dryf elektronów w stronę Słońca oraz jonów dodatnich od Słońca. Wyobraźmy sobie powierzchnię o ogromnym promieniu, przez który przepływają te prądy. Gdy przybywamy z głębokiego kosmosu, powierzchnia ta stale się zmniejsza. Dlatego, dla stałego całkowitego prądu, jego gęstość (A/m2) rośnie, w miarę, jak zbliżamy się do Słońca. Anoda (powierzchnia Słońca) jest tylko małym ułamkiem katody (rejon heliopauzy). Według najnowszych pomiarów, powierzchnia heliopauzy jest 653 miliony większa niż powierzchnia Słońca. Gęstość prądu na anodzie Słońca będzie więc 653 miliony większa, niż na katodzie heliopauzy.

  • W głębokiej przestrzeni - powiedzmy, tuż pod heliopauzą - gęstość prądu jest niezwykle mała, choć prąd całkowity jest ogromny. Jesteśmy w regionie ciemnego prądu, nie ma tam świecących gazów, nic, co mogłoby nam powiedzieć, że jesteś,y wewnątrz wyładowania - poza możliwymi emisjami radiowymi.

  • W miarę, jak przybliżamy się do Słońca, przekrój maleje a gęstość prądu rośnie. Wkraczamy w obszar normalnego żarzenia - jest to to, co nazywamy słoneczną zewnętrzną koroną. Intensywność wypromieniowywanego światła jest porównywalna z neonem. Wykres woltowo/amperowy ma ujemną krzywiznę i korona tworzy włóknistą formę. Włókna są bardzo dobrze widoczne w zewnętrznej koronie.

  • W końcu, w miarę przybliżania się do Słońca, sferyczny przekrój staje się tylko trochę większy niż jego powierzchnia. Gęstość prądu staje się bardzo duża, wkraczamy w region wyładowania łukowego. Jest to region stosunkowo wysoko woltażowej granuli. Jesteśmy w fotosferze. Emisja światła przypomina tą ze spawarki lub projektora. Duża jego część jest ultrafioletem. Jest to bardzo dobrze wiadome, że jeśli anoda w wyładowaniu jest dużo mniejsza od katody, obszar żarzenia anodowego formuje się tak, by zwiększyć efektywny rozmiar anody. Jest to przyczyną istnienia fotosfery.

  • Granicą pomiędzy koroną (stanem żarzenia) a fotosferą (łukiem) jest warstwa podwójna. Ten fenomen jest często obserwowany w eksperymentach laboratoryjnych.

Niektórzy wcześni badacze plazmy i większość współczesnych astronomów wierzy, że jedyna "prawdziwa" plazma doskonale przewodzi (a więc "wmraża" w siebie pole magnetyczne). Jest to fałszywa podstawa teoretyczna dla magnetycznej "rekoneksji". Wykres napięciowo prądowy, zamieszczony powyżej, pokazuje, że tak się nie dzieje. W każdym punkcie wykresu (za wyjątkiem jego początku) mamy niezerowy woltaż (pole E). Statyczna oporność plazmy w każdym punkcie wykresu jest proporcjonalna do nachylenia linii ciągnącej się od początku wykresu do tego punktu. To oznacza, że w każdym z możliwych stanów, plazma ma niezerową statyczną rezystancję; pobiera pole E do wytworzenia gęstości prądu. Oczywiście, statyczny opór plazmy na dalekim końcu ciemnego prądu może być całkiem duży. Obszar łuku oraz lewa połowa obszaru żarzenia wykazują ujemną dynamiczną rezystancję - i pole E może być całkiem niewielkie - ale nie o to nam chodzi. Żadna prawdziwa plazma nie może "wmrozić" w siebie pola magnetycznego. Najlepiej przewodząca plazma to ta w trybie łukowym. Ale nawet ona posiada niezerowe pole elektryczne, które powoduje powstawanie gęstości prądu. Plazma nie jest "idealnym superprzewodnikiem".

Fuzja w warstwie podwójnej

Efekt szczypania(?) w równoległych prądach frędzlowych o wysokiej intensywności, jest bardzo silny. Jeśli jakakolwiek fuzja jądrowa ma miejsce na Słońcu, zachodzi ona najprawdopodobniej w podwójnej warstwie na szczycie fotosfery (a nie głęboko w jądrze). Rezultatem fuzji są "metale", które dają o sobie znać liniami absorbcyjnymi w słonecznym spektrum. Ślady 68 z 92 naturalnych elementów zostały znaleziono w atmosferze Słońca. Z regionu tego emanuje większość zakłóceń radiowych. Hałas radiowy to kolejna dobrze znana właściwość podwójnej warstwy. Moc elektryczna dostarczana do plazmy w każdym punkcie jest produktem pola E (V/m) razy gęstość prądu (M/m2). Ta operacja mnożenia daje waty na metr kwadratowy (gęstość mocy). Gęstość prądu jest relatywnie niezmienna przez całą wysokość warstw fotosfery i chromosfery. Aczkolwiek, pole E jest najsilniejsze w środku warstwy. Panuje przekonanie, że fuzja nuklearna angażuje ogromne ilości energii - jeśli tak, owa moc jest dostępna wewnątrz podwójnej warstwy. Podobno zaobserwowano, że ilość słonecznych neutrino jest odwrotnie skorelowana do ilości plam. Jest to spodziewane w modelu elektrycznym, gdyż ich źródłem jest najprawdopodobniej "szczypanie", prowadzące do fuzji, w warstwie podwójnej, a tam, gdzie są plamy, warstwa ta nie występuje. Im większa wiec liczba plam, tym mniej neutrino.

C. D. N.

Pirogronian
O mnie Pirogronian

Drogi czytelniku. Nie chcę, żeby dochodziło miedzy nami do nieporozumień. Nie publikuję tutaj wiedzy objawionej. Jedyne, co robię, to mieszam w informacyjnym tyglu i wyławiam co ciekawsze moim zdaniem kawałki. Nawet, jeśli wykazuję się przy ich prezentacji dużym zaangażowaniem, to pamiętaj, że jestem w większości dziedzin tylko amatorem. Dlatego, mimo, że celowo nie wprowadzam nikogo w błąd, to pamiętaj, że... ...jesteś ciekaw, czy mam rację, to sam sprawdzaj informacje. Pozdrowionka :-P

Nowości od blogera

Komentarze

Pokaż komentarze (1)

Inne tematy w dziale Technologie