6 obserwujących
135 notek
81k odsłon
198 odsłon

Kalkulacje sił więzów podczas obrotu ciał sztywnych cz 3.

Wykop Skomentuj7

   Obecnie uważa się że aby opisać mechanikę obrotu konkretnej bryły sztywnej (BS), to przede wszystkim należy poznać jej trzy główne momenty bezwładności (każdą BS można tak zapisać), a rozmieszczenie poszczególnych punktów (mas) służy jedynie do wyliczenia tych momentów bezwładności i informacje te są już później nieistotne. czyli dwie BS o różnych pozycjach mas ale z tymi samymi momentami bezwładności, będą się zachowywać identycznie podczas takiego samego ruchu obrotowego.

    O tym że za ruch obrotowy odpowiadają siły więzów wiadomo już od dawna, ale odpowiedź jak te siły działają na konkretny punkt BS uznano za wiedze do niczego nie przydatną i zbędną i całkowicie ją zaniedbano. Wiemy jak się zachowuje BS, to po co nam wiedzieć co się dzieje z jej punktem, jak on pracuje? Większość normalnych nie widzi sensu w szukaniu odpowiedzi, ale mnie to akurat zainteresowało i chcę to wiedzieć dla samego faktu poznania. Jak to jest że różne BS zachowują się tak samo? Dlaczego ważny jest moment bezwładności a nieistotne jest położenie punktów? Jak te punkty wzajemnie na siebie oddziałują?

    Takie książkowe modle gdzie rozkład mas w BS ma trzy osie symetrii zostały już rozpracowane do najmniejszego szczegółu w dwóch moich poprzednich notkach

https://www.salon24.pl/u/przestrz/896396,kalkulacje-sil-wiezow-podczas-obrotu-cial-sztywnych

https://www.salon24.pl/u/przestrz/899050,kalkulacje-sil-wiezow-podczas-obrotu-cial-sztywnych-cz2

    Ale są to modele wyidealizowane i wirtualne, a BS mogą mieć różne kształty również niesymetryczne, jak wtedy działają te punkty, jakie działają na nie siły? Na daremno szukać odpowiedzi na te pytania w książkach, bo jest to wiedza niepotrzebna i przeklęta, nie porozmawiasz też o tym z Fizykiem bo ten od razu zwyzywa cię od nieuków, że takie głupie pytania zadajesz. Więc nie pozostaje nic jak odpowiedzi na to pytanie znaleźć samemu.

    Ponieważ odkryłem że mimo obecnego zaawansowania w nauce są ogromne luki, jak na przykład przegapienie wewnętrznego momentu siły odpowiadającego za mechanikę bryły sztywnej czy efekt Dzanibekowa


     Który już dawno wyliczyłem i udowodniłem na mnóstwo różnych sposobów, który obecny mędrcy uznali za bluźnierstwo i herezje (dla nich ziemia dalej jest płaska), przez jakiś czas miałem nadzieje że może przegapili oni coś jeszcze. Zastanawiałem się czy czasem asymetryczne rozmieszczenie mas nie skutkuje jeszcze jakimś efektem który nauka po prostu przegapiła.

   Moje pierwsze szacunki i kalkulacje dawały taką nadzieje ale moje własne amatorskie eksperymenty w warunkach domowych okazały się negatywne i nie udało mi się nic ciekawego uzyskać. W jednym eksperymencie były minimalne wyniki ale ich weryfikacja po przez odwrócenie ramion okazała się negatywna a powrót do pierwotnych ustawień nie dawał powtarzalnych wyników.

    Dlaczego więc asymetryczne BS zachowują się tak samo jak symetryczne BS? I jak działają siły więzów które powinny być centralne, ale gdyby tak było w asymetrycznych BS powinny się one nie zerować?

image


    Luźne ramie na którym jest zamontowana masa się unosi ale usztywnienie tego ramienia nie daje już tego efektu, czyli siły na niego działającą są inne. Skąd punkt wie że jest na ramieniu sztywnym czy luźnym?

    Muszę tu zaznaczyć ze podaje odpowiedź którą uważam za najbardziej prawdopodobną, być może nawet się ona bardzo spodoba Fizykom ale nie mogę być tego pewny w 100% do czasu weryfikacji eksperymentalnej. Musze tu zawierzyć matematyce, tym że prawidłowo umiem to policzyć i tym że prawo Fizyki również tutaj działa mimo że nikt nigdy tego nie sprawdził.

    Ponieważ zakładamy poprawność założenia że liczy się jedynie moment bezwładności a rozłożenie mas nie ma tu istotnego wpływu, to zacznijmy od wyliczenia momentów bezwładności mojej niesymetrycznej BS i transformacji w ciało symetryczne. Pomoże nam to zrozumieć dlaczego położenie punktów jest nie istotne.

image

    Po lewej mamy BS której dotyczy pytanie. Po prawej BS` z takimi samymi momentami bezwładności jednak rozkład mas symetryczny względem wszystkich osi głównych.

    Obliczymy najpierw BS` który jest książkowym przykładem aby mieć punkt odniesienia. Normalizujemy wartości a właściwie zostaje jedynie wartość prędkości kątowej ωx=-1.

Oczywiście m`1 i m`4 leżą na osi obrotu ich wektory prędkości równe są zero, czyli też działające na nich siły więzów równe są zero. Liczymy więc wektory prędkości dla m`2 i m`3 ze wzoru

image                                    (1)

image

image

następnie liczymy przyspieszenia dośrodkowe ze wzoru

image                                (2)

i siłę więzów

image

mamy więc parę symetrycznych sił które się zerują

image

image

Przejdźmy więc do wyliczenia sił dla punktów pierwotnej BS moją metodą. m1 znajduje się na osi obrotu więc prędkość i siła na niego działająca jest zero. Wyznaczamy więc prędkości dla punktów m2 i m3 ze wzoru (1)

Wykop Skomentuj7
Ciekawi nas Twoje zdanie! Napisz notkę Zgłoś nadużycie

Więcej na ten temat

Salon24 news

Co o tym sądzisz?

Inne tematy w dziale Technologie